3 research outputs found

    Using virtualisation to create a more secure online banking infrastructure

    Get PDF
    M.Sc. (Computer Science)Sim swop, Phishing, Zeus and SpyEye are all terms that may be found in articles concerning online banking fraud. Home users are unsure of how the configuration of their computers affects the risk profile for conducting online banking. Software installed by a home user on their computer may be malware designed to steal banking details. Customers expect banks to provide a safe online banking system. The challenge that banks have is that they cannot control the configuration that exists on a client operating system. The V-Bank system was designed to determine whether virtualisation can be used as a means to increase the security for online banking. The V-Bank system uses a virtual machine that is run from a guest that is single purpose, read-only and fulfils the configuration requirements that the bank has for a client system. The V-Bank system also utilises public and private key encryption for identification, authentication and authorisation mechanisms in the online banking system. The architecture of the V-Bank system defines online banking as an end-to-end system. It approaches online banking as a system that consists of three major components. The three major components is a client-side component, network and server-side environment. The V-Bank system gives banks the ability to provide customers with a system that is controlled from the client, through the network to the server. The V-Bank system demonstrates that virtualisation can be used to increase the security of online banking

    A model for a mobile operating environment

    Get PDF
    Abstract: In a connected world companies are facing many information and cyber security challenges. Users are using multiple computing devices for both business and personal use. The multiple devices create an environment where business and personal data becomes difficult to separate. The Neo model describes a mobile operating environment that supports a special mobile device, called the Neo device. The Neo device enables a user to use the device for both personal and business purposes. Personal and business information are strongly isolated with high levels of control for the data owner. The Neo model further describes a computing environment that allow users to use one device in many different scenarios using many different input and output peripherals, while maintaining a high level of security.Ph.D. (Computer Science

    Dextrin nanocomposites as matrices for solid dosage forms

    No full text
    Safe application of water-insoluble acaricides requires fast release from solid dosage systems into aquatic environments. Dextrin is a water-soluble form of partially hydrolyzed starch, which may be used as matrix material for these systems if retrogradation can be inhibited by the inclusion of nanofillers. Several glycerol-plasticized thermoplastic dextrin-based nanocomposites were prepared with a twin-screw extrusion-compounding process. The nanofillers included a layered double hydroxide (LDH), cellulose nanofibers (CNF), and stearic acid. The time-dependent retrogradation of the compounds was monitored by X-ray diffraction (XRD) and dynamic mechanical thermal analysis (DMA). XRD showed that composite samples that included stearic acid in the formulation led to the formation of an amylose-lipid complex and a stable crystallinity during aging. The most promising nanocomposite included both stearic acid and CNF. It was selected as the carrier material for the water-insoluble acaricide Amitraz. Fast release rates were observed for composites containing 5, 10, and 20% (w/w) of the pesticide. A significant reduction in the particle size of the released Amitraz powder was observed, which is ascribed to the high-temperature compounding procedure.PAMSA and the Department of Science and Innovationhttps://pubs.acs.org/journal/aamickhj2021Chemical EngineeringConsumer ScienceFood Scienc
    corecore